Health Information Technology

Curtis L. Cole, MD
October 2012
Lecture Outline

• The Big Picture
 • Major Types of Systems
 • Clinical vs Research Systems

• Drivers of System Functionality & Design
 • Now and in the Future

• Research vs Clinical Data
Financial Disclosure

• Employed by Weill Cornell Medical College
• Funded in part by:
 – New York Presbyterian
 – National Institute of Health
 • NCRR CTSA, Julianne Imperato McGinley, PI
 • HEAL NY, Rainu Kaushal PI
 • RWJF, Lawrence Casalino, PI
• Consult for GuidePoint Global
• Own Vanguard and TIAA-CREF funds
• Stock in Prosper Street Technologies
• 8-10 Bethune St/791 Owners Corp
Big Picture: Generations of HIT

- **Integrate**
 - Biomedical Equipment with EMRs
 - Patient Data Across Disciplines

- **Connect**
 - Providers with Providers
 - Patients with Patients
 - Phenotype & Genotype

- **Enhance & Enable**
 - Quality of Care
 - Safety
 - Efficiency
 - Compliance
 - Patient & Doctor Satisfaction

1. Collect Data for Review
2. Modular Systems
 - CPOE
 - Data Collection Tools
3. Local Workflow
 - Interfaces
 - Reporting
4. Enterprise Workflow
5. Information Exchange
 - Mobility
 - Portals
 - Research
Translational Informatics

- Patient Encounter
- Clinical Data
- Interfaces
- Knowledge Management
- Knowledge

Shared Semantics (Terminology/Vocabulary/Ontology)

- Expert Systems/CDS
- Clinical Guidelines
- Research

Modified from: Chris Chute, Mayo
Major Types of Systems

- Biomedical Devices
- EHR
- Clinical
 - Instrumentation

Revenue Cycle
- Practice Management/ADT
- Claims Processing
- Clearinghouse

Research
- Corporate Systems/Infrastructure
- Research Devices
- Data Collection

The Patient
Some Drivers of Current System Structure

- Technology: What we can do easily.
- Ownership: Who bought the system.
 - Intent: Why was the system purchased.
- Provider (& Payer) Incentives:
 - How are doctors and hospitals paid.
 - Fee for Service vs Prospective Payment
 - Who gets paid more than whom.
 - What is expensive/valuable.
- Vendor Incentives
 - How can vendor maximize their profit.
- Regulation: What functionality is mandated.
- Legacy: Which systems came first.
Some Drivers of Future System Structure

• Technology: Entering the Exabyte Era
 – Big Data: Volume/Velocity/Variety
 – Medical: Genomics, Imaging, Personal Digital Exhaust
 • Limits in Personnel & Expertise/Cost
 – Non-Medical: Moore’s Law: Storage, Compute, Bandwidth
 • Limited by energy costs/carbon emissions?

• Ownership: Patient/Provider/Payer/Intermediaries

• Provider (& Payer) Incentives:
 – Health Care Reform: ACOs, Medical Home
 – Rewards for Bigness: But is bigger better?

• Vendor Incentives
 – Open Systems vs “Walled Gardens”

• Regulation: Mandates? Incentives? Invisible Hand?

• Legacy: More of it and more complex than ever?
Translational Data Gap

Research Data
- Reliable
 - Collected by protocol
 - Precise
 - Structured
 - Coherent
 - Complete
- Valid
 - Tested
- Hyperspecific

Clinical Data
- Unreliable
 - Quasi Random
 - Patient driven not protocol
 - Inconsistent
 - Detail
 - Structure
 - Completeness
- Impressionistic
- Context Dependent
- Holistic

Modified from: Chris Chute, Mayo
Billing Data: The Center of the Medical Universe

• Reliable?
 – Collected by protocol of sort
 – Structured to a point
 – Relatively Complete

• Valid?
 – Imprecise
 – Biased by third party payment incentives

Modified from: Chris Chute, Mayo
Coming Soon:
Truly Patient Centric Data

- Mobile Devices
- Ubiquitous Wireless
- Physiologic Monitors
- Patient Portals
 - Digital Exhaust
 - Real Time Healthcare Interventions
 - Studies with an N of 1
- Who will aggregate the data?
- Who will analyze the data?
- Who will pay?
EMRs Need Structured Vocabulary

• Interoperability
 – Human <> Computers
 – Computer to Computer
• What we do: Procedures
• Why we do it: Diagnosis
• How we do it: Medications, Results, Orders,…
• Who…
• Where…
Reference Vocabularies Are Necessary but not Sufficient

- Synthesize knowledge from multiple settings and disciplines
- Classify knowledge and define “Truth”
- Require that all system map to that Truth
 - Elegant
 - “Correct”
 - Slow
 - Expensive
 - Impossible
Interface Vocabularies

• Cross-map between terminologies
• Focus on the Point of Care
• Fill gaps in reference terminologies
 – Gaps in content
 – Gaps in usability
 – Gaps in technical implementability
• Usable now - Removable later
Some Important Terminologies and Standards in Medical IT

- ICD-9,10 (International Classification of Diseases)
- SNOMED (Systematized Nomenclature of Medicine)
- AMA CPT (Current Procedural Terminology)
- RxNorm
- LOINC (Logical Observation Identifiers Names and Codes)
- NDC (National Drug Code)
- HL7 (Health Level 7)
- RadLex
Some Important Terminologies and Standards in Clinical Trials

- CDISC: Clinical Data Interchange Standards Consortium
- BRIDG: the Biomedical Research Integrated Domain Group
- OCRe: the Ontology of Clinical Research
- ERGO: the Eligibility Rule Grammar and Ontology
- HSDB: the CTSA Human Studies Database
- LexGRID: a distributed network of terminological resources
 – HL7 Common Terminology Services (HL7 CTS)
EpicCare with Enhanced Diagnosis Master-file Content

— Consider a patient with the following problem list:

 • Sclerosing cholangitis
 • Hepatitis C
 • CAD
 • Cluster headaches
 • Dizziness
 • Knee pain
Old ICD-9 Based View

![Old ICD-9 Based View](image)

© 2004 Epic Systems Corporation Confidential
New Enhanced Terminology View
The Revenue Cycle

Four Interacting Flows

- **Patient Flow**
 - Identity
 - Location

- **Work Flow**
 - Who does what, where, and when.
 - How does the system support their work.
 - What does the system need from them to help them or others in the flow.

- **Data Flow**
 - Where does data come from, how is it captured, where does it end up, how is it translated (syntax and semantics)

- **Revenue Cycle**
 - How will payment be made and by whom. What data and transactions are needed to ensure payment.